Un vehículo eléctrico se alimenta de la electricidad almacenada en grandes baterías recargables en su interior, que permite su funcionamiento con cero emisiones en su punto de uso y sin apenas ruido, excepto el producido por los neumáticos.

En la última década hemos asistido a una profunda mejora de las baterías, reduciendo su coste y permitiendo más ciclos de carga, a la vez que ha aumentado la capacidad de almacenamiento por unidad de peso y volumen, se ha eliminado el efecto memoria y ha aumentado su duración. La mejora de las baterías va a continuar, y un día sí y otro también los medios de comunicación anuncian nuevas baterías con nuevos materiales que mejoran las prestaciones de las ya existentes, y cada vez más empresas se lanzan a un sector que se prevé con un brillante futuro, porque las baterías sustentan y hacen posible los teléfonos móviles, los ordenadores portátiles y múltiples aparatos de consumo, y la electrificación del transporte por carretera hoy es ya más que una mera posibilidad.

Las baterías se alimentan de electricidad, que puede producirse de múltiples maneras, y su impacto fundamental es el de la propia generación de electricidad. Pueden recargarse en las horas valle, de menor demanda, e incluso en un futuro podrían verter electricidad a la red en horas punta de máxima demanda (V2G).

La red de distribución existe, a diferencia del hidrógeno, y la infraestructura básica podría construirse en poco tiempo y sin grandes dificultades. Pero también hay importes desventajas e inconvenientes. En primer lugar la capacidad y el coste de las baterías. Las baterías de ión-litio mejoran la capacidad y la autonomía de los vehículos, pero son costosas, se recalientan y, sobre todo, existe un debate no resuelto sobre si hay recursos suficientes de litio para fabricar millones de nuevos automóviles. El precio de la tonelada de litio pasó de costar 350 dólares en 2003 a 3.000 dólares en 2008.

Otros inconvenientes son las limitaciones de tamaño y prestaciones de los vehículos eléctricos, el tiempo de recarga de las baterías, la ausencia actual de puntos de recarga o de cambio de baterías, y los cambios que deberían producirse en la generación de electricidad y en la red de distribución. No obstante, las ventajas económicas, políticas, sociales y ambientales a medio y largo plazo son muy superiores a los inconvenientes reales, lo que explica el apoyo de numerosos gobiernos al desarrollo de los vehículos eléctricos recargables.

Un hecho es incontestable: la gasolina y el gasóleo proporcionan mayor densidad energética y flexibilidad que la más avanzada de las baterías: 13 kWh/kg en la gasolina (8,9 kWh por litro) y 12,7 kWh/kg en el gasóleo, frente a 0,16 kWh de la última generación de baterías de iones de litio.

La mayor densidad energética de los hidrocarburos garantiza una mayor autonomía, a pesar de su ineficiencia para convertir la energía química almacenada en kilómetros recorridos. Además, se requieren sólo unos minutos para llenar el depósito, frente a las varias horas necesarias para recargar los actuales vehículos eléctricos, y existe toda una infraestructura bien desarrollada de gasolineras, frente a su ausencia en el caso de los vehículos eléctricos.

Tipos de baterías:

Plomo-ácido: Los acumuladores de plomo-ácido son las más antiguas y tienen una baja relación entre la electricidad acumulada con el peso y el volumen. Ocupan mucho espacio y pesan mucho, pero son duraderas y de bajo coste, y se tasa de reciclaje supera el 90%. Para conseguir una autonomía de 50 km con una velocidad punta de 70 km/h se necesiten más de 400 kg de baterías de plomo-ácido. El periodo de recarga puede oscilar entre 8 y 10 horas.

Níquel Cadmio (NiCd): Utilizan un ánodo de níquel y un cátodo de cadmio. El cadmio es un metal pesado muy tóxico, por lo que han sido prohibidas por la Unión Europea. Tienen una gran duración (más de 1.500 recargas) pero una baja densidad energética (50 Wh/kg), además de verse afectadas por el efecto memoria.

Baterías de Níquel-Hidruro Metálico (NiMH): Las baterías recargables de níquel hidruro metálico es muy similar a la de níquel cadmio, pero sin el metal tóxico, por lo que su impacto ambiental es muy inferior. Las baterías recargables de níquel hidruro metálico almacenan de 2 a 3 veces más electricidad que sus equivalentes en peso de níquel cadmio, aunque también se ven afectadas por el efecto memoria, aunque en una proporción menor. Su densidad energética asciende a unos 80 Wh/kg.

Iones de litio (Li-ion): Las baterías de iones de litio deben su desarrollo a la telefonía móvil y su desarrollo es muy reciente. Su densidad energética asciende a unos 115 Wh/kg, y no sufren el efecto memoria. Las baterías de iones de litio se usan en teléfonos móviles, ordenadores portátiles, reproductores de MP3 y cámaras, y probablemente alimentarán la siguiente generación de vehículos híbridos y eléctricos puros conectados a la red. A pesar de sus indudables ventajas, también presentan inconvenientes: sobrecalentamiento, alto coste y, sobre todo, las reservas de litio, sujetas a una gran controversia.

Baterías de polímero de litio: Es una tecnología similar a la de iones de litio, pero con una mayor densidad de energía, diseño ultraligero (muy útil para equipos ultraligeros) y una tasa de descarga superior. Entre sus desventajas está la alta inestabilidad de las baterías si se sobrecargan y si la descarga se produce por debajo de cierto voltaje.

Baterías Zebra (NaNiCl): Una de las baterías recargables que más prometen son las conocidas como Zebra. Tienen una alta densidad energética, pero operan en un rango de temperaturas que va de 270ºC a 350ºC, lo que requiere un aislamiento. Son apropiadas en autobuses. En Stabio, en el sur del cantón del Tesino (Suiza), se está construyendo una fábrica para producir baterías en serie. Entre sus inconvenientes, además de la temperatura de trabajo, están las pérdidas térmicas cuando no se usa la batería. El automóvil eléctrico Think City va equipado con baterías Zebra Na-NiCl de 17,5 kWh.

 Autonomía real

La distancia que un vehículo eléctrico puede recorrer sin recargar la batería, en los modelos actuales o de próxima fabricación, va de 60 a 250 kilómetros. Hay que tener en cuenta que la mayor parte de los desplazamientos diarios son inferiores a los 60 km. Un vehículo eléctrico consume de 0,12 kWh a 0,30 kWh por kilómetro; para recorrer 100 kilómetros haría falta una batería con una capacidad de 12 kWh a 30 kWh, dependiendo del modelo.

Redes de distribución, V2G

La V2G corresponde a las siglas inglesas de “Vehicle-to-Grid” (del vehículo a la red), y es la tecnología que permite el almacenamiento en las horas valle y la recuperación de la electricidad en las horas punta desde las baterías de los vehículos eléctricos a la red.

La tecnología V2G permite cargar las baterías durante las horas valle, cuando el kWh es más barato, y venderlo a la red en horas punta, cuando el kWh es más caro. Con la V2G todos ganan: los propietarios de los vehículos, las empresas eléctricas, la sociedad y el planeta, aunque para ello se requiere crear toda una infraestructura hoy inexistente. Pero incluso sin la V2G, la electrificación del transporte tiene grandes beneficios para todos.

Por carecer de la clásica infraestructura de transporte basada en los hidrocarburos, se piensa que serán China e India los países que acometan la más profunda electrificación del transporte, en el clásico salto tecnológico, muy similar al de los países en desarrollo que se han pasado a la telefonía móvil sin pasar por la telefonía fija.

La recarga de los vehículos eléctricos puede ser conductiva o inductiva. El sistema conductivo es una conexión directa a la red, tan simple como enchufar el vehículo mediante cables especiales de alta capacidad con conectores que protejan al conductor de los altos voltajes. El acoplamiento inductivo tiene la ventaja de imposibilitar cualquier electrocución, pero es más caro y menos eficiente que el primero.

La electricidad de la red se suministra en corriente alterna al vehículo. Normalmente el cargador la convierte en corriente continua y la suministra al voltaje adecuado a la batería, desde donde se suministra al motor y a las ruedas. Algunos motores funcionan con corriente alterna, por lo que un inversor debe convertir la corriente continua de la batería.

Dado que en España, como en la mayoría de los países, la tarifa nocturna o valle es inferior a la normal, lo usual sería recargar las baterías por la noche. Una red “inteligente” de decenas de miles de puntos de recarga en calles y aparcamientos, con el software apropiado, diría al vehículo cuando debe recargar, parar e incluso verter la electricidad a la red. Hay que tener en cuenta que la mayor parte del parque pasa gran parte del tiempo aparcado, utilizándose sólo una o dos horas al día en la mayoría de los casos. Por término medio el 95 por ciento de todos los automóviles están estacionados en un momento dado, utilizándose como media una hora al día.

Por esta razón los vehículos eléctricos pueden jugar un papel clave para empezar a gestionar mejor la red, aplanar la curva de carga, aprovechar la llamada reserva activa que en gran parte se desaprovecha (la cantidad de electricidad disponible para garantizar la inmediata disponibilidad en caso de necesidad por un aumento inesperado de la demanda) y permitir un aumento de la aportación de la eólica y otras energías renovables, y quizás suponga una reconversión de los sectores eléctricos y de transporte, dando lugar a nuevas empresas especializadas, siguiendo un modelo similar al de la telefonía móvil.

La reserva activa podría suministrar la electricidad que consume un tercio del parque de vehículos en la mayoría de los países, siempre que exista la red adecuada, y evitaría tener que crear una capacidad de generación muy costosa que sólo se va a utilizar unas pocas horas al año, esas 30 o 40 horas que coinciden con olas de frío o de calor.

Un vehículo eléctrico tipo, que recorra unos 17.000 kilómetros al año, y realice la recarga en un 80% con tarifa nocturna, gastaría unos 800 euros al año en electricidad. Recorrer esa misma distancia con gasolina o gasóleo costaría de 2.000 a 2.500 euros en combustible, dadas las pautas normales de conducción.

Para las empresas eléctricas, la electrificación del transporte no sólo supone abrir un nuevo mercado para su producto, la electricidad, sino también la posibilidad de optimizar el parque de generación y la red eléctrica, aplanando la curva de carga, al incentivar una nueva demanda en horas valle, mediante la recarga inteligente de las baterías, gestionada por ordenador, y que avise de cuando cargar, interrumpir o verter electricidad a la red en horas punta. Tal sistema es óptimo para gestionar la creciente aportación de la energía eólica, y dar un paso de gigante hacia la sostenibilidad de la generación de electricidad.

www.evwind.com